Knowledge Agora



Similar Articles

Title Deamination of Polyols from the Glycolysis of Polyurethane
ID_Doc 24513
Authors Donadini, R; Boaretti, C; Scopel, L; Lorenzetti, A; Modesti, M
Title Deamination of Polyols from the Glycolysis of Polyurethane
Year 2024
Published Chemistry-A European Journal, 30, 3
Abstract Methylenedianiline (MDA) is a secondary, undesired, product of the glycolysis process of polyurethane (PU) scraps due to hydrolysis and pyrolysis side reactions. As an aromatic and carcinogen amine, MDA poses different problems in handling, transporting, and labelling recycled polyols derived from glycolysis, hindering the closure of PU recycling loop. Aiming to provide a solution to this issue, in this work different deaminating agents (DAs) were investigated with the purpose of analyzing their reactivity with MDA. A first part of the study was devoted to the analysis of MDA formation as a function of reaction time and catalyst concentration (potassium acetate) during glycolysis. It was observed that the amount of MDA increases almost linearly with the extent of PU depolymerization and catalyst content. Among the DAs analyzed 2-ethylhexyl glycidyl ether (2-EHGE), and acetic anhydride (Ac2O) showed interesting performance, which allowed MDA content to be diminished below the limit for labelling prescription in 30 minutes. PU rigid foams were, therefore, synthesized from the corresponding recycled products and characterized in terms of thermal and mechanical performance. Ac2O-deaminated polyols led to structurally unstable foams with poor compressive strength, while 2-EHGE-deaminated products allowed the production of foams with improved mechanical performance and unaltered thermal conductivity. Phasing out of landfilling is inevitable, chemical recycling allows the consideration of plastic waste as a resource to get the most out of it to produce new valuable materials.image
PDF https://doi.org/10.1002/chem.202301919

Similar Articles

ID Score Article
23984 Miguel-Fernández, R; Amundarain, I; Asueta, A; García-Fernández, S; Arnaiz, S; Miazza, NL; Montón, E; Rodríguez-García, B; Bianca-Benchea, E Recovery of Green Polyols from Rigid Polyurethane Waste by Catalytic Depolymerization(2022)Polymers, 14, 14
12880 Johansen, MB; Donslund, BS; Kristensen, SK; Lindhardt, AT; Skrydstrup, T tert-Amyl Alcohol-Mediated Deconstruction of Polyurethane for Polyol and Aniline Recovery(2022)Acs Sustainable Chemistry & Engineering, 10.0, 34
16850 Gama, N; Godinho, B; Marques, G; Silva, R; Barros-Timmons, A; Ferreira, A Recycling of polyurethane by acidolysis: The effect of reaction conditions on the properties of the recovered polyol(2021)
24280 Gama, N; Godinho, B; Marques, G; Silva, R; Barros-Timmons, A; Ferreira, A Recycling of polyurethane scraps via acidolysis(2020)
15089 Gama, N; Godinho, B; Madureira, P; Marques, G; Barros-Timmons, A; Ferreira, A Polyurethane Recycling Through Acidolysis: Current Status and Prospects for the Future(2024)
21897 Njuguna, JK; Muchiri, P; Mwema, FM; Karuri, NW; Herzog, M; Dimitrov, K Determination of thermo-mechanical properties of recycled polyurethane from glycolysis polyol(2021)
24429 Godinho, B; Gama, N; Barros-Timmons, A; Ferreira, A Recycling of polyurethane wastes using different carboxylic acids via acidolysis to produce wood adhesives(2021)Journal Of Polymer Science, 59, 8
7349 Grdadolnik, M; Zdovc, B; Drincic, A; Onder, OC; Utrosa, P; Ramos, SG; Ramos, ED; Pahovnik, D; Zagar, E Chemical Recycling of Flexible Polyurethane Foams by Aminolysis to Recover High-Quality Polyols(2023)Acs Sustainable Chemistry & Engineering, 11, 29
23887 Amundarain, I; Miguel-Fernández, R; Asueta, A; García-Fernández, S; Arnaiz, S Synthesis of Rigid Polyurethane Foams Incorporating Polyols from Chemical Recycling of Post-Industrial Waste Polyurethane Foams(2022)Polymers, 14, 6
15072 Xin, KY; Lu, JQ; Zeng, QY; Zhang, TY; Liu, JW; Zhou, J; Dong, WL; Jiang, M Depolymerization of the polyester-polyurethane by amidase GatA250 and enhancing the production of 4,4′-methylenedianiline with cutinase LCC(2024)Biotechnology Journal, 19, 4
Scroll